Abstract

The x-ray spectra of several highly stripped molybdenum ions have been recorded between 0.6 and 5.5 A in the Frascati tokamak upgrade with a rotating crystal spectrometer. Detailed, quasi-steady-state collisional-radiative models have been used to interpret emission features from inner shell, electron impact excitations in molybdenum ions near the neonlike charge state and to characterize the charge state distribution in the plasma. Processes such as resonant excitation, excitation autoionization, and dielectronic recombination have been included in the models of the molybdenum ions{close_quote} emission features. Introducing the excitation-autoionization process into ionization equilibrium calculations brings agreement between observations and calculations of the relative ionization equilibrium fractions of highly stripped molybdenum ions. Absolutely calibrated spectra and detailed models for the excitation processes in these molybdenum ions allow us to calculate crucial plasma parameters, such as the concentration of impurity ions in the plasma and the amount of power lost from the plasma through impurity line radiation. {copyright} {ital 1996 The American Physical Society.}

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.