Abstract
Fully relativistic collisional Particle-in-Cell (PIC) code, PICLS, has been developed to study extreme energy density conditions produced in intense laser-solid interaction. Recent extensions to PICLS, such as the implementation of dynamic ionization, binary collisions in a partially ionized plasma, and radiative losses, enhance the efficacy of simulating intense laser plasma interaction and subsequent energy transport in resistive media. Different ionization models are introduced and benchmarked against each other to check the suitability of the model. The atomic physics models are critical to determine the energy deposition and transport in dense plasmas, especially when they consist of high Z (atomic number) materials. Finally we demonstrate the electron transport simulations to show the importance of target material on fast electron dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.