Abstract
A complex semiclassical model for the calculation of line widths and shifts of H 2O broadened by N 2, derived from the Robert and Bonamy approach, is tested by comparisons with measurements for selected transitions in various vibrational bands. The lines retained, which involve rotational states with Kc= J or J−1 have been chosen for two reasons. The first is that they show large variations of the widths with J and thus enable a severe test of the model. The second is that, as explained in this paper, they are well-suited for the study of the effects of vibration on the collisional parameters. The measured values have been extracted from an updated version of a database built years ago (JQSRT 52 (1994) 481) that contains all available measurements. Comparisons between experimental and calculated widths and shifts at room temperature illustrate the quality of the model and clearly demonstrate, for the first time, that there is a vibrational dependence of the broadening. Values of collisional parameters are first studied in fundamental bands. This shows that the theoretical approach accounts for most of the dependence of broadening and shifting on rotational quantum numbers: the variations of γ, which reach a factor of nearly 20 from low to high J values, are correctly accounted for by the model as are some specific features of the shifts δ. Analysis confirms that the bending and stretching vibrations have significantly different effects on δ, due to the vibrational dependence of the intermolecular potential. On the other hand, differences on the widths are rather small with slightly smaller broadening for lines of the bending band. Calculations show that there is a spectroscopic effect, due to the larger rotational constant A in the v 2=1 state. Calculations made for overtone bands involving numerous quanta of the stretching vibration are then presented. They predict that a significant dependence of the width should be observed for high J lines due to the effect of vibration on the interaction potential. This is confirmed by comparisons with measurements for lines involving a change of three and four quanta of stretching vibration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Quantitative Spectroscopy and Radiative Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.