Abstract

Although collisional electrostatic shock waves have been investigated extensively via theory, simulations, and experiments, there are comparatively few studies about collisional magnetized shock waves. We investigate collisional magnetized shocks by performing one-dimensional full particle-in-cell simulations that incorporate ion-ion, electron-electron, and ion-electron Coulomb collisions, for perpendicular and quasiparallel shock waves. The effect of Coulomb collisions is to drive a shock wave into a more laminar state. For a perpendicular shock, the magnetic overshoot becomes small because the electron pressure perpendicular to the magnetic field is isotropized and decreases due to electron-electron collisions. For the quasiparallel case, we find that ion-electron collisions severely suppress the standing whistler wave, which is present in the form of large amplitude waves in a collisionless shock wave.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.