Abstract

We consider the effect of interactions on the line shape of the two-photon 1s-2s transition in a (doubly) spin-polarized atomic hydrogen gas in terms of the interatomic interaction potentials. We show that the frequency-weighted sum rule for the intensity of the line is not given simply in terms of the pseudopotentials that describe the interactions between low-energy atoms. The origin of the departures from the simple pseudopotential result for the frequency-weighted sum rule is traced to what we refer to as incoherent contributions to the spectral weight. These arise from more complicated final states of the many-body system than the ones usually considered. In particular, we show how the relevant response function may be treated in a manner similar to the density-density response function for Fermi liquids, and express it as a coherent part coming from single particle-hole pairs, and an incoherent part coming from other excitations. We argue that in experiments only the coherent part of the response of the system is observed, and its contribution to the frequency-weighted sum rule is shown to be given correctly by the pseudopotential approximation. Finally we calculate the width of the coherent part of the line due to collisional damping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.