Abstract

In this article, we show that photoexcitation of radical anions facilitates electron transfer from sodium atoms in femtosecond encounters. Thus, excitation of 7,7,8,8-tetracyano-p-quinodimethane (TCNQ) and fluorinated TCNQ (TCNQ-F(4)) anions to the second optically active state at 478 nm led to increases in the yields of dianions of about 20% and 10%, respectively. Photoexcitation with a nanosecond-long laser pulse was done a few microseconds before the ions entered the sodium collision cell so that none of the ions would be in any of the initially reached doublet-excited states. We suggest an explanation for the higher electron capture cross section based on the formation of long-lived quartet state anions. Excitation of TCNQ anions within the lowest-energy absorption band, where there are no accessible quartet states, led instead to a lower yield of dianions. There are at least three explanations for the lower dianion yields: (1) Depletion of the monoanion beam due to photodetachment after the absorption of minimum two photons; (2) Formation of short-lived vibrationally excited dianions that decay by electron autodetachment prior to identification; and (3) Lower electron capture cross sections of vibrationally excited monoanions. Similar losses in dianion signal can occur at 478 nm so the actual yield of dianions at this wavelength due to the population of quartet states is therefore greater than that observed. Our methodology devises a more efficient route for the production of molecular dianions, and at the same time it may provide information on long-lived electronic states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call