Abstract

We study the loss of spatial coherence in the extended wave function of fullerenes due to collisions with background gases. From the gradual suppression of quantum interference with increasing gas pressure we are able to support quantitatively both the predictions of decoherence theory and our picture of the interaction process. We thus explore the practical limits of matter wave interferometry at finite gas pressures and estimate the required experimental vacuum conditions for interferometry with even larger objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.