Abstract

The collisional deactivation of vibrationally highly excited azulene was studied from the gas to the compressed liquid phase. Employing supercritical fluids like He, Xe, CO2, and ethane at pressures of 6–4000 bar and temperatures ≥380 K, measurements over the complete gas–liquid transition were performed. Azulene with an energy of 18 000 cm−1 was generated by laser excitation into the S1 and internal conversion to the S0*-ground state. The subsequent loss of vibrational energy was monitored by transient absorption at the red edge of the S3←S0 absorption band near 290 nm. Transient signals were converted into energy-time profiles using hot band absorption coefficients from shock wave experiments for calibration and accounting for solvent shifts of the spectra. Under all conditions, the decays were monoexponential. At densities below 1 mol/l, collisional deactivation rates increased linearly with fluid density. Average energies 〈ΔE〉 transferred per collision agreed with data from dilute gas phase experiments. For Xe, CO2, and C2H6, the linear relation between cooling rate and diffusion coefficient scaled collision frequencies ZD turned over to a much weaker dependence at ZD≳0.3 ps−1. Up to collision frequencies of ZD=15 ps−1 this behavior can well be rationalized by a model employing an effective collision frequency related to the finite lifetime of collision complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.