Abstract
Collisional broadening and pressure shift parameters for the potassium resonance doublet, near 770 nm, are reported for collisions with molecular oxygen and carbon dioxide. Experiments were conducted in a reflected shock tube from 1200–2200 K and used potassium chloride (KCl) salt as the atomic potassium source. The measured absorption lineshapes were fit with Voigt profiles to infer the collisional broadening and pressure shifts. Power-law correlations were then developed to describe the pressure-normalized results as functions of temperature. Generally, the collisional broadening coefficients in oxygen agree well with theoretical predictions and are similar to those in nitrogen. Conversely, the pressure shift coefficients in oxygen differ from those in nitrogen by up to 15%. Broadening coefficients in carbon dioxide disagree with theoretical predictions by 20% or more over the range of temperatures explored in this work. These results expand the existing database of potassium lineshape coefficients, and they are expected to be useful for further development of potassium sensing diagnostics in terrestrial, Martian, and Venusian atmospheric flight studies, and in combustion systems. Other anticipated applications include interpretation of astrophysical spectroscopic observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Quantitative Spectroscopy and Radiative Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.