Abstract

Dust accumulation has a significant influence on the performance of solar photovoltaic (PV) modules. Investigating the particle collision-adhesion mechanism helps to understand dust accumulation characteristics of PV modules and provide theoretical support for dust removal work, and hence, improve PV efficiency. This study established a collision-adhesion model between particles and PV modules. Then, the mechanical equilibrium-based and energy-based particle adhesion mechanisms were explored and particle deposition condition was proposed. Furthermore, a dust accumulation experiment was created to verify the rationality of simulation model, which was constructed using energy-based particle adhesion mechanism. Based on this, a simulation was performed on the impact of various factors on particle deposition. The results showed the particle kinetic energy loss with a magnitude of 10−13 J in the collision was positively correlated with humidity and particle size, while negatively correlated with wind speed and tilt angle. The particle deposition amount first decreases and then increases with increasing wind speed and particle size. However, it increases with increasing humidity and decreases with increasing tilt angle. Additionally, when the tilt angle increases from 15° to 60°, the particle deposition amount reduced from 4.28 g/m2 to 1.81 g/m2 under 7 m/s. In the future construction of PV power plants, for the area where particle size and average annual wind speed are less than 30 μm and 7 m/s, increasing the tilt angle appropriately can reduce dust accumulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.