Abstract

Siderophores are high-affinity iron-chelating ligands produced by microorganisms to scavenge vital Fe(3+) from the environment. Thus, siderophores constitute potential therapeutic targets and their structural determination is important for exploiting their therapeutic value. Here, the virulence-associated siderophore petrobactin from Bacillus anthracis was characterized with electron capture dissociation (ECD). Fragmentation of doubly protonated petrobactin was investigated and compared to sustained off-resonance irradiation collision-activated dissociation (SORI CAD) and infrared multiphoton dissociation (IRMPD) of both the singly and doubly protonated species. These experiments demonstrate that ECD provides additional information (complementary bond cleavages) on the structure of petrobactin compared to both SORI CAD and IRMPD. Furthermore, complexes of petrobactin with divalent (Ca(2+), Fe(2+), and Co(2+)) and trivalent (Fe(3+) and Ga(3+)) metal cations were also subjected to SORI CAD and ECD. Again, most structural information was obtained from the ECD spectra. However, significant differences were found in both SORI CAD and ECD of metal complexes, dependent on the nature of the metal ion. Intriguingly, unique behavior, consistent with a recently proposed solution-phase structure, was observed for the highly preferred Fe(3+)-petrobactin complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.