Abstract

Through quantum-beat spectroscopy collision relaxation of a high vibrational level of SO2 at 44 877.52 cm(-1) is characterized. This is a first measurement of collision relaxation for a single, highly excited vibrational level. The deduced relaxation cross section of this excited level by Ar is 216 A(2), 5 times the area of the hard sphere, and by an ambient temperature SO2 molecule is 969 A(2), almost 20 times the hard sphere. These cross sections indicate that relaxation collisions of highly vibrationally excited molecules have effective distances much longer than van der Waals radii and involve mechanisms qualitatively different from lower excitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.