Abstract

An experimental study was carried out on the normal impact of the vortex ring on the granular layer. The Reynolds number of the vortex ring ranged from 1000 to 6000, whereas the distance to the granular layer (glass beads of diameter 0.10 mm) varied between 2 and 13 times of the diameter of the vortex ring generator nozzle. The velocity field was visualized by the sodium fluorescein and was measured by particle image velocimetry or particle tracking velocimetry. The flow field in the vicinity of the granular surface was also visualized by an almost mono-layer of fine particles deposited on the main granular layer, which elucidated the development of the secondary and tertiary vortex rings. Generally speaking, the characteristics of the granular layer are found to be similar to a liquid plane for the impact of a vortex ring of a smaller impulse, whereas it is closer to a solid plane for a vortex ring of a larger impulse. For the vortex ring with a much larger impulse, the granular layer is engraved, whose patterns reflect the deformation of the primary and/or secondary vortex ring due to the interaction with the granular layer (as will be described in part II).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call