Abstract
Collision-induced signal enhancement (CISE), a new technique to enhance the MSn capabilities of the quadrupole ion trap, is demonstrated. CISE is based on the chemistry, i.e., the dissociation pathways, of the analyte examined. Polysaccharides up to hexamers are used to demonstrate the capabilities of CISE to enhance signal in two distinct functional modes. Mode 1 CISE is designed to enhance the signal of an ion desired for MSn analysis. Mode 2 CISE is designed to enhance structurally significant product ions in an MS/MS spectrum. Two different approaches can be utilized to effect the two functional modes of CISE. Both approaches use conventional resonant excitation techniques to effect dissociation, which is performed nonanalytically, i.e., without isolation of the ions to be dissociated. The two approaches are (1) single-frequency resonance excitation, and (2) broad-band wave form resonant excitation. Experimental results for Mode 1 CISE analysis demonstrate up to a 17.3-fold signal increase for the single-frequency approach and 5.3-fold using broad-band excitation. Mode 2 CISE analysis shows up to a 16.3-fold increase in signal strength with single-frequency excitation and 3.3-fold using broad-band excitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.