Abstract

The lower levels of adventitious H2 O in a linear ion trap allow the fragmentation reactions of [UO2 OCH3 ](+) and [UO2 OCH2 CH3 ](+) to be examined in detail. Methanol- and ethanol-coordinated UO2 (2+) -alkoxide precursors were generated by electrospray ionization (ESI). Multiple-stage tandem mass spectrometry (MS(n) ) and collision-induced dissociation (CID) were performed using a linear ion trap mass spectrometer. CID of [UO2 OCH3 (CH3 OH)n ](+) and [UO2 OCH2 CH3 (CH3 CH2 OH)n ](+) , n=3 and 2, causes loss of neutral alcohol ligands, leading ultimately to bare uranyl-alkoxide species. Comparison of 'native' to deuterium-labeled precursors reveals dissociation pathways not previously observed in 3-D ion trap experiments. UO2 H(+) is generated from [UO2 OCH3 ](+) by transfer of H from the methyl group. Variable-energy and variable-time CID experiments suggest that the apparent threshold for production of UO2 H(+) is lower than for UO2 (+) , but the pathway is kinetically less favored for the former than for the latter. CID experiments reveal that [UO2 OCH2 CH3 ](+) dissociates to generate [UO2 CH3 ](+) , a relatively rare species with a U-C bond, and [UO2 (O=CH2 )](+) .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.