Abstract

Structural determination of carbohydrates using mass spectrometry remains challenging, particularly, the differentiation of anomeric configurations. In this work, we studied the collision-induced dissociation (CID) mechanisms of sodiated α- and β-l-fucose using an experimental method and quantum chemistry calculations. The calculations show that α-l-fucose is more likely to undergo dehydration due to the fact that O1 and O2 are on the same side of the sugar ring. In contrast, β-l-fucose is more prone to the ring-opening reaction because more OH groups are on the same side of the sugar ring as O1. These differences suggest a higher preference for the dehydration reaction in sodiated α-l-fucose but a lower preference for ring-opening compared to that of β-l-fucose. The calculation results, which are used to assign the CID mass spectra of α- and β-l-fucose separated by high-performance liquid chromatography, are supported by the fucose produced from the CID of disaccharides Fuc-β-(1 → 3)-GlcNAc and Fuc-α-(1 → 4)-GlcNAc. This study demonstrates that the correlation of cis- and trans-configurations of O1 and O2 to the relative branching ratios of dehydration and cross-ring dissociation in CID, observed in aldohexose and ketohexose in the pyranose form, can be extended to deoxyhexoses for anomericity determination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call