Abstract
Isoxazoles are an important class of organic compounds widely employed in synthesis and drug design. Fragmentation chemistry of the parent isoxazole molecule and its substituents has been the subject of several experimental and theoretical investigations. Collision induced dissociation (CID) of isoxazole and its substituents has been studied experimentally under negative ion conditions. Based on the observed reaction products, dissociation patterns were proposed. In the present work, we studied the dissociation chemistry of deprotonated isoxazole and 3-methyl isoxazole using electronic structure theory calculations and direct chemical dynamics simulations. Various deprotonated isomers of these molecules were activated by collision with an Ar atom, and the ensuing fractionation patterns were studied using on-the-fly classical trajectory simulations at the density functional B3LYP/6-31+G* level of electronic structure theory. A variety of reaction products and pathways were observed, and it was found that a nonstatistical shattering mechanism dominates the CID dynamics of these molecules. Simulation results are compared with experiments, and detailed atomic level dissociation mechanisms are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society for Mass Spectrometry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.