Abstract

We present a simple way to construct 3D initial conditions for relativistic heavy-ion collisions based on the Glauber collision geometry. Local energy and momentum conservation conditions are imposed to set non-trivial constraints on our parameterizations of longitudinal profiles for the system's initial energy density and flow velocity. After calibrating parameters with charged hadron rapidity distributions in central Au+Au collisions, we test model predictions for particle rapidity distributions in d+Au and peripheral Au+Au collisions in the Beam Energy Scan (BES) program at Relativistic Heavy-Ion Collider (RHIC). Simulations and comparisons with measurements are also made for Pb+Pb collisions at Super Proton Synchrotron (SPS) energies. We demonstrate that elliptic flow measurements in heavy-ion collisions at $\sqrt{s} \sim 10$ GeV can set strong constraints on the dependence of Quark-Gluon Plasma shear viscosity on temperature and net baryon chemical potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.