Abstract

Using event-by-event viscous fluid dynamics to evolve fluctuating initial density profiles from the Monte-Carlo Glauber model for U+U collisions, we report a "knee"-like structure in the elliptic flow as a function of collision centrality, located around the 0.5% most central collisions as measured by the final charged multiplicity. This knee is due to the preferential selection of tip-on-tip collision geometries by a high-multiplicity trigger. Such a knee structure is not seen in the STAR data. This rules out the two-component MC-Glauber model for initial energy and entropy production. Hence an enrichment of tip-tip configurations by triggering solely on high-multiplicity in the U+U collisions does not work. On the other hand, by using the Zero Degree Calorimeters (ZDCs) coupled with event-shape engineering such a selection is possible. We identify the selection purity of body-body and tip-tip events in full-overlap U+U collisions. By additionally constraining the asymmetry of the ZDC signals we can further increase the probability of selecting tip-tip events in U+U collisions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.