Abstract

Conformationally dependent ionization of the simplest amino acid, glycine, is studied by Penning ionization electron spectroscopy with velocity-resolved metastable He*(2(3)S) atoms. The observed He I ultraviolet photoelectron and Penning ionization electron spectra are reproduced by superimposed theoretical spectra, assuming thermal distributions of conformers. The conformations of amino acids are determined by analyzing the observed Penning ionization cross sections, peak shifts, and collision energy dependences of partial ionization cross sections (CEDPICS). The Penning ionization cross sections are governed by collisionally accessible exterior electron densities. When the amino and carbonyl groups are exposed to He* access, the nonbonding orbitals of N (n(N)) and O atoms (n(O)) give rise to strong bands. The observed negative peak shifts and negative CEDPICS for the n(N) and n(O) orbitals suggest the presence of attractive interactions around their electron distributions. The most attractive wells are estimated to be approximately 400 meV in the direction of the n(N) orbitals by ab initio model calculations. A conformer possessing dual hydrogen bonds contributes predominantly to the spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.