Abstract

Collisions of fullerene ions (C 60 +) with helium and neon were carried out over a range of laboratory energies (3–20 keV) on a unique tandem time-of-flight (TOF/TOF) mass spectrometer equipped with a curved-field reflectron (CFR). The CFR enables focusing of product ions over a wide kinetic energy range. Thus, ions extracted from a laser desorption/ionization (LDI) source are not decelerated prior to collision, and collision energies in the laboratory frame are determined by the source extraction voltages. Comparison of product ion mass spectra obtained following collisions with inert gases show a time (and apparent mass) shift for product ions relative to those observed in spectra obtained by metastable dissociation (unimolecular decay), consistent with impulse collision models, in which interactions of helium with fullerene in the high energy range are primarily with a single carbon atom. In addition, within a narrow range of kinetic energies an additional peak corresponding to the capture of helium is observed for fragment ions C 50 +, C 52 +, C 54 +, C 56 + and C 58 +.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call