Abstract

The Coulomb collision effects on a saturated electrostatic potential (plug potential) formation in the end-mirror cell of a tandem mirror were investigated by a Monte Carlo simulation of ion orbits. A non-Maxwellian electron distribution function, which leads to a modified Boltzmann law, is assumed to obtain the electrostatic potential. An ion velocity distribution is determined by the Monte Carlo simulation of ions. It was found that a saturated electrostatic potential is formed in a wide range of the Coulomb collisionality. Especially, fewer Coulomb collisions were found to create a higher saturated electrostatic potential along a magnetic field, although the Coulomb collisions are necessary for a saturated electrostatic potential formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.