Abstract

By employing atomistic simulations based on an empirical potential model and a self-consistent-charge density-functional tight-binding method, the collision dynamics process of an energetic carbon ion impinging on the Stone-Wales defect in a single-walled carbon nanotube was investigated. The outwardly and inwardly displacement threshold energies for the primary knock-on atom in the Stone-Wales defect were calculated to be 24.0 and 25.0 eV, respectively. The final defect configuration for each case was a 5-1DB-T(DB=dangling bond) defect formed in the front surface of the nanotube. Moreover, the minimum incident energy of the projectile prompting the primary knock-on atom displacement was predicted to be 71.0 eV, and the time evolutions of the kinetic and potential energies of the projectile and the primary knock-on atom were both plotted to analyze the energy transfer process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call