Abstract

As vital transportation carriers in trade, ships have the advantage of stability, economy, and bulk capacity over airplanes, trucks, and trains. Even so, their loss and cost due to collisions and other accidents exceed those of any other mode of transportation. To prevent ship collisions many ways have been suggested, e.g., the 1972 COLREGs which is the regulation for preventing collision between ships. Technologically speaking, many related studies have been conducted. The term “Ship domain” involves that area surrounding a ship that the navigator wants to keep other ships clear of. Ship domain alone is not sufficient, however, for enabling one or more ships to simultaneously determine the collision risk for all of the ships concerned. Fuzzy theory is useful in helping ships avoid collision in that fuzzy theory may define whether collision risk is based on distance to closest point of approach, time to closest point of approach, or relative bearing – algorithms that are difficult to apply to more than one ships at one time. The main purpose of this study is thus to reduce collision risk among multiple ships using a distributed local search algorithm (DLSA). By exchanging information on, for example, next-intended courses within a certain area among ships, ships having the maximum reduction in collision risk change courses simultaneously until all ships approach a destination without collision. In this paper, we introduce distributed local search and explain how it works using examples. We conducted experiments to test distributed local search performance for certain instances of ship collision avoidance. Experiments results showed that in most cases, our proposal applies well in ship collision avoidance amongmultiple ships.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.