Abstract

The safe integration of a large number of unmanned aircraft systems (UASs) into the National Airspace System (NAS) is essential for advanced air mobility. This requires reliable air-to-air transmission systems and robust collision avoidance algorithms. Automatic Dependent Surveillance-Broadcast (ADS-B) is a potential solution for a dependable air-to-air messaging system, but its reliability when stressed with hundreds to thousands of vehicles operating simultaneously is in question. This paper presents an ADS-B model and analyzes the capabilities of the Universal Access Transceiver (UAT), which operates at a frequency of 978 MHz. We use a probabilistic collision avoidance algorithm to examine the impact of varying parameters, including the number of vehicles and the transmission power of the UAT, on the overall safety of the vehicles. Additionally, we investigate the root causes of co-channel interference, proposing enhancements for safe operations in environments with a high density of UAS. Simulation results show message success and collision rates. With our proposed enhancements, UAT ADS-B can provide a decentralized air traffic system that operates safely in high-density situations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call