Abstract

We describe the use of a quartz pipet nanopore to study the collision and coalescence of individual emulsion oil droplets and their subsequent nanopore translocation. Collision and coalescence of single toluene droplets at a nanopore orifice are driven primarily by electroosmosis and electrophoresis and lead to the fast growth of a trapped oil droplet. This results in a stepwise current response due to the coalesced oil droplet increasing its volume and its ability to partially block the nanopore's ionic current, allowing us to use the resistive-pulse method to resolve single droplet collisions. Further growth of the trapped oil droplet leads to a complete blockage of the nanopore and a nearly 100% current decay. The trapped oil droplet shows enormous mechanical stability at lower voltages and stays in its trapped status for hundreds of seconds. An increased voltage can be used to drive the trapped droplet into the pipet pore within several milliseconds. Simultaneous fluorescence imaging and amperometry were performed to examine droplet collision, coalescence, and translocation, further confirming the proposed mechanism of droplet-nanopore interaction. Moreover, we demonstrate the unique ability to perform fast voltammetric measurements on a nanopore-supported attoliter oil droplet and study its voltage-driven ion transfer processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.