Abstract
First-order autoregressive models are popular to assess the temporal dynamics of a univariate process. Researchers often extend these models to include time-varying covariates, such as contextual factors, to investigate how they moderate processes’ dynamics. We demonstrate that doing so has implications for how well one can estimate the autoregressive and covariate effects, as serial dependence in the variables can imply predictor collinearity. This is a noteworthy contribution, since in current practice serial dependence in a time-varying covariate is rarely considered important. We first recapitulate the role of predictor collinearity for estimation precision in an ordinary least squares context, by discussing how it affects estimator variances, covariances and correlations. We then derive a general formula detailing how predictor collinearity in first-order autoregressive models is impacted by serial dependence in the covariate. We provide a simulation study to illustrate the implications of the formula for different types of covariates. The simulation results highlight when the collinearity issue becomes severe enough to hamper interpretation of the effects. We also show that the effect estimates can be biased in small samples (i.e., 50 time points). Implications for study design, the use of time as a predictor, and related model variants are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.