Abstract
The collinear Mecanum drive (CMD) is a novel robot locomotion system, capable of generating omnidirectional motion while simultaneously dynamically balancing, achieved using a collinear arrangement of three or more Mecanum wheels. The CMD has a significantly thinner ground footprint than existing omnidirectional locomotion methods, which does not need to be enlarged with increasing robot height as to avoid toppling during acceleration or external disturbance. This combination of omnidirectional manoeuvrability and a thin ground footprint allows for the creation of tall robots that are able to navigate through much narrower gaps between obstacles than existing omnidirectional locomotion methods. This allows for greater manoeuvrability in confined and cluttered environments, such as that encountered in the personal service and automated warehousing robotics sectors. This article derives the kinematics and dynamics models of the CMD, analyzes controllability and accessibility, and determines the degree to which a CMD can be linearized by feedback. A partial feedback linearization is then performed, and three practically useful nonlinear controllers are derived using a backstepping design approach, all with convergence and stability guarantees for the fully coupled nonlinear model. These are demonstrated both in simulation and on a real-world CMD experimental prototype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.