Abstract

We revisit the derivation of collinear factorization for Deep Inelastic Scattering at subasymptotic values of the four-momentum transfer squared, where the masses of the particles participating in the interaction cannot be neglected. By using an inclusive jet function to describe the scattered quark final state, we can restrict the needed parton kinematic approximations just to the four-momentum conservation of the hard scattering process, and explicitly expand the rest of the diagram in powers of the unobserved parton transverse momenta rather than neglecting those. This procedure provides one with more flexibility in fixing the virtuality of the scattered and recoiling partons than in the standard derivation, and naturally leads to scaling variables that more faithfully represent the partonic kinematic at subasymptotic energy than the Bjorken's ${x}_{B}$ variable. We then verify the validity of the obtained factorization formula by considering a diquark spectator model designed to reproduce the main features of electron-proton scattering at large ${x}_{B}$ in Quantum Chromodynamics. In the model, the Deep Inelastic Scattering contribution to the cross section can be explicitly isolated and analytically calculated, then compared to the factorized approximation. Limiting ourselves to the leading twist contribution, we then show that use of the new scaling variables maximizes the kinematic range of validity of collinear factorization, and highlight the intrinsic limitations of this approach due to the unavoidably approximate treatment of four-momentum conservation in factorized diagrams. Finally, we briefly discuss how these limitations may be overcome by including higher-twist corrections to the factorized calculation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.