Abstract

In a half-filled Hubbard model on a square lattice, the next-nearest-neighbor hopping causes spin frustration, and the collinear antiferromagnetic (CAF) state appears as the ground state with suitable parameters. We find that there is a metal-insulator transition in the CAF state at a critical on-site repulsion. When the repulsion is small, the CAF state is metallic, and a van Hove singularity can be close to the Fermi surface, resulting in either a kink or a discontinuity in the magnetic moment. When the on-site repulsion is large, the CAF state is a Mott insulator. A first-order transition from the CAF phase to the antiferromagnetic phase and a second-order phase transition from the CAF phase to the paramagnetic phase are obtained in the phase diagram at zero temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.