Abstract
BackgroundLinac output as a function of field sizes has a phantom and a head scatter component. This last term can be measured in-air with appropriate build-up ensuring a complete electron equilibrium and the absence of the contaminant electrons. Equilibrium conditions could be achieved using a build-up cap or a mini-phantom. Monte Carlo simulations in a virtual phantom mimicking a mini-phantom were analysed with the aim of better understanding the setup conditions for measuring the collimator scatter factor that is the head scatter component of the linac output factors.MethodsBeams of 6 and 15 MV from a TrueBeam, with size from 4 × 4 to 40 × 40 cm2 were simulated in cylindrical acrylic phantoms 20 cm long, of different diameters, from 0.5 to 4 cm, with the cylinder axis coincident with the beam central axis. The PRIMO package, based on PENELOPE Monte Carlo code, was used. The phase-space files for a Varian TrueBeam linac, provided by the linac vendor, were used for the linac head simulation. Depth dose curves were analysed, and collimator scatter factors estimated at different depth in the different phantom conditions.Additionally, in-air measurements using acyrilic and brass build-up caps, as well as acrylic mini-phantom were acquired for 6 and 18 MV beams from a Varian Clinac DHX.ResultsThe depth dose curves along the cylinders were compared, showing, in each phantom, very similar curves for all analysed field sizes, proving the correctness in estimating the collimator scatter factor in the mini-phantom, provided to position the detector to a sufficient depth to exclude electron contamination. The results were confirmed by the measurements, where the acrylic build-up cap showed to be inadequate to properly estimate the collimator scatter factors, while the mini-phantom and the brass caps gave reasonable measurements.ConclusionA better understanding of the beam characteristics inside a virtual mini-phantom through the analysis of depth dose curves, showed the critical points of using the acrylic build-up cap, and suggested the use of the mini-phantom for the collimator scatter factor measurements in the medium-large field size range.
Highlights
Linac output as a function of field sizes has a phantom and a head scatter component
Fogliata et al Radiation Oncology (2018) 13:126 field size of the scatter contribution coming from the irradiated medium and depends mainly on the beam energy; the collimator or head scatter factor, Collimator scatter factor (Sc), which quantifies the dose variation generated by the linac head in the different geometrical conditions of varying field sizes
It is possible to hypothesize that, for the 6 MV beam, the 0.5 cm, and possibly 1 cm diameter phantoms are not wide enough to guarantee lateral equilibrium, while from 2 cm diameter the presence of a small flat profile region around the central axis could suggest that the lateral equilibrium conditions are met
Summary
Linac output as a function of field sizes has a phantom and a head scatter component. The big challenge in estimating the contribution of the linac head to the dose determination and its variation and uncertainties, is the ability/possibility of performing measurements in conditions of electronic equilibrium, while eliminating the phantom contribution, which, on the other side, is responsible of the electronic equilibrium achievement. This could be obtained by using an appropriate build-up cap added to the ionization chambers or other detectors used. Build-up caps of high-density materials for small fields, other than plastics, have been used
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.