Abstract
The physical mechanisms driving the collimation of dense plasma jets created by low-energy ( approximately 0.6 J) laser pulse irradiation of triangular grooves were studied for different target materials using soft-x-ray interferometry and hydrodynamic code simulations. The degree of collimation of jets created by irradiating C, Al, Cu, and Mo targets at intensities of I=1x10(12) W cm(-2) with 120 ps laser pulses was observed to increase significantly with the atomic number. Radiation cooling is found to be the cause of the increased collimation, while the main effect of the increase in mass is to slow the jet evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.