Abstract
X-ray luminescence computed tomography (XLCT) is a hybrid imaging modality with the potential to achieve a spatial resolution up to several hundred micrometers for targets embedded in turbid media with a depth larger than several millimeters. In this paper, we report a high spatial resolution XLCT imaging system with a collimated superfine x-ray beam in imaging the deeply embedded targets. A collimator with a 100 micrometer pinhole was mounted in the front of a powerful x-ray tube to generate a superfine x-ray pencil beam with a beam diameter of 0.175 mm. For the phantom experiment of four capillary targets with an edge-to-edge distance of 400 micrometers, we were able to reconstruct the targets in a depth of 5 mm successfully, which were validated with microCT images. We have further investigated the effect of different x-ray beam diameters on the reconstructed XLCT images with numerical simulations. Our results indicate that XLCT has the ability to image successfully multiple deeply embedded targets when the collimated x-ray beam diameter is less than or equal to the target edge-to-edge distance. Our numerical simulations also demonstrate that XLCT can achieve a spatial resolution of 200 micrometers for targets embedded at a depth of 5 mm if the scanning beam has a diameter of 100 micrometers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of X-Ray Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.