Abstract

Utilizing two-photon excitation in hot Rb vapor we demonstrate the generation of collimated optical fields at 420 and 1324 nm. Input laser beams at 780 and 776 nm enter a heated Rb vapor cell collinear and circularly polarized, driving Rb atoms to the 5D(5/2) state. Under phase-matching conditions coherence among the 5S(1/2)→5P(3/2)→5D(5/2)→6P(3/2) transitions produces a blue (420 nm) beam by four-wave mixing. We also observe a forward and backward propagating IR (1324 nm) beam, due to cascading decays through the 6S(1/2)→5(1/2) states. Power saturation of the generated beams is investigated by scaling the input powers to greater than 200 mW, resulting in a coherent blue beam of 9.1 mW power, almost an order of magnitude larger than previously achieved. We measure the dependences of both beams in relation to the Rb density, the frequency detuning between Rb ground-state hyperfine levels, and the input laser intensities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.