Abstract

Pure spin currents, generated by nonlocal spin injection and spin-orbit effects, have been widely used to control magnetization reversal and dynamics by current without charge transfer and its side effects in the device's actual working region. Here we experimentally demonstrate that a single coherent spin-wave mode can be excited by the pure spin current in a nonlocal spin-injection spin-valve device. The microwave spectra show that the observed spin-wave frequency is higher than the ferromagnetic resonance frequency, and almost does not change with the excitation current at moderate magnetic fields, indicating that the observed dynamical mode is a linear propagating spin-wave mode. Furthermore, micromagnetic simulations based on our device geometry generally reproduce the experimentally observed field-dependent and current-dependent oscillation characteristics, and provide us with the additional spatial information that the spin-wave mode exhibits collimated and bidirectional propagation paths in the direction perpendicular to the applied magnetic field. Our simulation results also show that the current-local Oersted field in our nonlocal device is much smaller than in conventional nanocontact magnetic oscillators, and has a minimal impact on the spin-wave dynamics. A near-symmetrically-collimated and bidirectional propagating spin-wave beam with magnetic field--controllable beam direction and current-independent frequency, achieved in our demonstrated nonlocal spin-current nano-oscillator, can be used as a local spin-wave source for magnonic logic devices and can be used to build daisy-chaining oscillatory neural networks with mutual synchronization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.