Abstract

We continue our study of colligative properties of solutions initiated in ref. 1. We focus on the situations where, in a system of linear size L, the concentration and the chemical potential scale like c=ξ/L and h=b/L, respectively. We find that there exists a critical value ξt such that no phase separation occurs for ξ≤ξt while, for ξ>ξt, the two phases of the solvent coexist for an interval of values of b. Moreover, phase separation begins abruptly in the sense that a macroscopic fraction of the system suddenly freezes (or melts) forming a crystal (or droplet) of the complementary phase when b reaches a critical value. For certain values of system parameters, under “frozen” boundary conditions, phase separation also ends abruptly in the sense that the equilibrium droplet grows continuously with increasing b and then suddenly jumps in size to subsume the entire system. Our findings indicate that the onset of freezing-point depression is in fact a surface phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.