Abstract

AbstractWe analyze the performance of a prototypical scheme for shared storage allocation: two initially empty stacks evolving in a contiguous block of memory of size m. We treat the case in which the stacks are more likely to shrink than grow, but with the probabilities of insertion and deletion allowed to depend arbitrarily on stack height as a fraction of m. New results are obtained on the m → ∞ asymptotics of the stack collision time, and of the final stack heights. The results of Wentzell and Freidlin on the large deviations of Markov chains are used, and the relation of their formalism to the Hamiltonian formulation of classical mechanics is emphasized. Certain results on higher‐order asymptotics follow from WKB expansions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.