Abstract

We examine supersymmetric models with mixed modulus-anomaly mediated SUSY breaking (MM-AMSB) soft terms which get comparable contributions to SUSY breaking from moduli-mediation and anomaly-mediation. The apparent (mirage) unification of soft SUSY breaking terms at Q=mu_mir not associated with any physical threshold is the hallmark of this scenario. The MM-AMSB structure of soft terms arises in models of string compactification with fluxes, where the addition of an anti-brane leads to an uplifting potential and a de Sitter universe, as first constructed by Kachru {\it et al.}. The phenomenology mainly depends on the relative strength of moduli- and anomaly-mediated SUSY breaking contributions, and on the Higgs and matter field modular weights, which are determined by the location of these fields in the extra dimensions. We delineate the allowed parameter space for a low and high value of tan(beta), for a wide range of modular weight choices. We calculate the neutralino relic density and display the WMAP-allowed regions. We show the reach of the CERN LHC and of the International Linear Collider. We discuss aspects of MM-AMSB models for Tevatron, LHC and ILC searches, muon g-2 and b->s \gamma branching fraction. We also calculate direct and indirect dark matter detection rates, and show that almost all WMAP-allowed models should be accessible to a ton-scale noble gas detector. Finally, we comment on the potential of colliders to measure the mirage unification scale and modular weights in the difficult case where mu_mir>>M_GUT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.