Abstract
Haplotype data play a relevant role in several genetic studies, e.g., mapping of complex disease genes, drug design, and evolutionary studies on populations. However, the experimental determination of haplotypes is expensive and time-consuming. This motivates the increasing interest in techniques for inferring haplotype data from genotypes, which can instead be obtained quickly and economically. Several such techniques are based on the maximum parsimony principle, which has been justified by both experimental results and theoretical arguments. However, the problem of haplotype inference by parsimony was shown to be NP-hard, thus limiting the applicability of exact parsimony-based techniques to relatively small data sets. In this paper, we introduce collapse rule, a generalization of the well-known Clark's rule, and describe a new heuristic algorithm for haplotype inference (implemented in a program called CollHaps), based on parsimony and the iterative application of collapse rules. The performance of CollHaps is tested on several data sets. The experiments show that CollHaps enables the user to process large data sets obtaining very "parsimonious" solutions in short processing times. They also show a correlation, especially for large data sets, between parsimony and correct reconstruction, supporting the validity of the parsimony principle to produce accurate solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.