Abstract

The use of hybrid scheme combining the message passing programming models for inter-node parallelism and the shared memory programming models for node-level parallelism is widely spread. Existing extensive practices on hybrid Message Passing Interface (MPI) plus Open Multi-Processing (OpenMP) programming account for its popularity. Nevertheless, strong programming efforts are required to gain performance benefits from the MPI+OpenMP code. An emerging hybrid method that combines MPI and the MPI shared memory model (MPI+MPI) is promising. However, writing an efficient hybrid MPI+MPI program – especially when the collective communication operations are involved – is not to be taken for granted.In this paper, we propose a new design method to implement hybrid MPI+MPI context-based collective communication operations. Our method avoids on-node memory replications (on-node communication overheads) that are required by semantics in pure MPI. We also offer wrapper primitives hiding all the design details from users, which comes with practices on how to structure hybrid MPI+MPI code with these primitives. Further, the on-node synchronization scheme required by our method/collectives gets optimized. The micro-benchmarks show that our collectives are comparable or superior to those in pure MPI context. We have further validated the effectiveness of the hybrid MPI+MPI model (which uses our wrapper primitives) in three computational kernels, by comparison to the pure MPI and hybrid MPI+OpenMP models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.