Abstract

Collective variable-based enhanced sampling methods have been widely used to study thermodynamic properties of complex systems. Efficiency and accuracy of these enhanced sampling methods are affected by two factors: constructing appropriate collective variables for enhanced sampling and generating accurate free energy surfaces. Recently, many machine learning techniques have been developed to improve the quality of collective variables and the accuracy of free energy surfaces. Although machine learning has achieved great successes in improving enhanced sampling methods, there are still many challenges and open questions. In this perspective, we shall review recent developments on integrating machine learning techniques and collective variable-based enhanced sampling approaches. We also discuss challenges and future research directions including generating kinetic information, exploring high-dimensional free energy surfaces, and efficiently sampling all-atom configurations.Graphic abstract

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.