Abstract

Load control has traditionally been viewed as a useful tool for peak load reduction in power systems. With the increasing renewable energy penetration in the grid, load control is also considered as a tool to exploit the storage in dispersed devices naturally present in power systems such as electric water heaters to mitigate generation variability. Tapping into the storage dispersed across the power system is challenging because of the large number of devices that need to be coordinated to produce desirable system level behavior. In this paper a mean field game theoretic based control architecture is proposed as a load control mechanism to limit the required flows of information, and produce local constraints conscious decentralized individual controls which aggregate to a desired mean behavior. A Markovian jump-driven model of individual electric water heating loads is employed where the mean field effect is mediated through the quadratic cost function parameters under the form of an integral error. The corresponding system of mean field Nash equilibrium inducing equations is developed and numerical simulation results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.