Abstract

We investigate a novel aspect of rotational tunneling of the macroscopic spin for multicomponent spinor Bose-Einstein condensate (BEC). The Lagrangian is deduced from the multi-component BEC system formalism, and is written in terms of spin coherent states. From the effective Hamiltonian for the collective spin, the tunneling rate is obtained through a functional integral of the spin variable. It is pointed out that the cooperative effect between the Zeeman energy and the anisotropic nature of the spin-dependent inter-atomic interaction plays a key role for occurrence of collective spin tunneling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.