Abstract

Realization of robust coherent quantum phase slips represents a significant experimental challenge. Here we propose a new design consisting of multiple nanowire junctions to realize a phase-slip flux qubit. It admits good tunability provided by gate voltages applied on superconducting islands separating nanowire junctions. In addition, the gates and junctions can be identical or distinct to each other leading to symmetric and asymmetric setups. We find that the asymmetry can improve the performance of the proposed device, compared with the symmetric case. In particular, it can enhance the effective rate of collective quantum phase slips. Furthermore, we demonstrate how to couple two such devices via a mutual inductance. This is potentially useful for quantum gate operations. Our investigation on how symmetry in multiple nanowire junctions affects the device performance should be useful for the application of phase-slip flux qubits in quantum information processing and quantum metrology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.