Abstract

We have studied the collective properties of two-dimensional (2D) excitons immersed within a quantum well which contains 2D excitons and a two-dimensional electron gas (2DEG). We have also analyzed the excitations for a system of 2D dipole excitons with spatially separated electrons and holes in a pair of quantum wells (CQWs) when one of the wells contains a 2DEG. Calculations of the superfluid density and the Kosterlitz-Thouless (K-T) phase transition temperature for the 2DEG-exciton system in a quantum well have shown that the K-T transition temperature increases with increasing exciton density and that it might be possible to have fast long range transport of excitons. The superfluid density and the K-T transition temperature for dipole excitons in CQWs in the presence of a 2DEG in one of the wells increases with increasing inter-well separation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.