Abstract

Excitation of collective plasmonic modes and their effect on optical behavior are experimentally and theoretically studied in 1D arrays of gold nanostrips in comparison with continuous gold films with periodically modulated profile. In strips, the angular dependence of the reflectivity demonstrates a peak at the resonance condition as opposed to a dip observed in continuous sine wave gratings. In addition, an extremely narrow feature in the reflection is observed in strips and tentatively ascribed to the bright Wood-Rayleigh anomaly. Theoretical calculations based on the combined transfer-matrix coupled-wave analysis and coordinate transformation method are shown to fit the experimental angular and spectral behavior of the plasmonic resonances. The effects are also discussed in terms of a simple equivalent circuit model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.