Abstract

We study the chaotic behavior of order parameters in two coupled ensembles of self-sustained oscillators. Coupling within each of these ensembles is switched on and off alternately, while the mutual interaction between these two subsystems is arranged through quadratic nonlinear coupling. We show numerically that in the course of alternating Kuramoto transitions to synchrony and back to asynchrony, the exchange of excitations between two subpopulations proceeds in such a way that their collective phases are governed by an expanding circle map similar to the Bernoulli map. We perform the Lyapunov analysis of the dynamics and discuss finite-size effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.