Abstract
A simple model for the nonlinear collective transport of interacting particles in a random medium with strong disorder is introduced and analyzed. A finite threshold for the driving force divides the behavior into two regimes characterized by the presence or absence of a steady-state particle current. Below this threshold, transient motion is found in response to an increase in the force, while above threshold the flow approaches a steady state with motion only on a network of channels which is sparse near threshold. Some of the critical behavior near threshold is analyzed via mean field theory, and analytic results on the statistics of the moving phase are derived. Many of the results should apply, at least qualitatively, to the motion of magnetic bubble arrays and to the driven motion of vortices in thin film superconductors when the randomness is strong enough to destroy the tendencies to lattice order even on short length scales. Various history dependent phenomena are also discussed. \textcopyright{} 1996 The American Physical Society.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.