Abstract

Magnetic particles moving freely in a fluid can organize dense phases (3D clusters or linear chains). We analyze the spectrum of magnetic oscillations of a chain of spherical magnetic particles taking into account the magnetic anisotropy of an individual particle for an arbitrary relation between the anisotropy energy and the energy of the dipole interaction of particles. For any relation between these energies, the spectrum contains three branches of collective oscillations: a high-frequency branch and a weakly split doublet of low-frequency branches. The frequency of the high-frequency branch is determined by a stronger interaction, while the frequencies of the low-frequency branches are determined by the weakest interaction. Accordingly, the dispersion is maximal for oscillations formed by the dipole-dipole interaction of particles, which have high frequencies in the case of a strong dipole interaction or low frequencies in the case of a strong anisotropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.