Abstract
We studied the collective modes of a Bose-Einstein condensate (BEC) with spin-orbit coupling. We developed the hydrodynamic equations for spin-orbit coupled BECs and used them to study collective modes in the plane-wave phase and large Rabi coupling regime for both a uniform BEC and a BEC in a harmonic trap. In the homogeneous situation, we obtained energy spectra of elementary excitations and found that the spin-orbit coupling can increase the effective mass of the atoms, which will suppress the sound velocity. The spin-orbit coupling can also change the spin mixing, which will modify the interaction energy, and may lead to an enhancement of sound velocity. The competition between these two effects gives the behavior of sound velocity. In a harmonic trap, we found that the dipole mode and the breathing mode are coupled together in the plane-wave phase, and these two modes have a $\ensuremath{\pi}/2$ phase difference, because the spin-orbit coupling and the interaction are not invariant under spin rotation. However, in the large Rabi coupling regime, the dipole mode and the breathing mode are decoupled due to the symmetry restriction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.